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problem is again of standard least squares form. Flexibility in the application of 
least squares techniques is therefore substantially enhanced. 
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Improved Asymptotic Expansion for the 
Error Function with Imaginary Argument 

By D. van Z. Wadsworth 

The well-known asymptotic approximation to the error function can be mark- 
edly improved, for the case with imaginary argument, by adding a simple correction 
term as shown below. The improved analytic approximation was needed in connec- 
tion with the analysis of spacecraft and ICBMI re-entry trajectories. 

By definition* the error function with imaginiary argument ix where x is real is 

rx i 1/2 

(1) erf (ix) =i e 
e2 ds = 

f t"2e' dt t- eJ t'12et dt- 

The branch cut for t-F"2 extends along the negative imaginary axis of the t plane 
and the Riemann sheet is chosen for which t-I12 is positive on the positive real axis. 
The path of integration L goes from - oo to x2 as shown in Figure 1. Repeated 
partial integration of the infinite integral yields -i erf (ix) = En(x) + en(x) 
where 

-1 x2 n 

(2) En(x) =x e ZE r2m 
2 0 

is the asymnptotic approximation for the interval (n - ') < X2 < (n + 2) and 

(3) en(x) = 24? f ( A t et dt + 2 7r 

is the error of the asymptotic approximation. The coefficient r" = 2-2n(2n)!/n!. 
The integral in equation (3) is equivalent to a line integral on the segment 

[-c, -x2] and an integral on the semi-circle joining -x2 and x2. If we let 
x2 exp (ir - iso) = t in the latter integral we obtain 

I t n-31let dt = (-)fl1x2fl1f exp [-x2 cos s + iX2 sin ' + i(n + 2)(p] dp 
( 4 ) 0f + (_) n+ i 1tn32 e- dt. 
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* This definition differs by a factor of 27r-1'2 from that given by some authors. 
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If we substitute the right side of equation (4) into equation (3) we obtain 

(5) en(X) rn+1 ( n)n+1X-n-l f e-2OSf cOs (x2 sin So + + 2) q') d(, 

where we have used the fact that en(x2) is real in order to simplify the right-hand 
side. (As can be seen from equations (1) and (2), both -i erf (ix) and En(x) 
must be real; consequently en(x) must be real.) 

To evaluate the integral in equation (5) we expand the cosine factor in a 
Taylor's series in the independent variable sin(o - 7r) about the point sO = r: 

cos Fx2 sin p + + 2 = e sin s + (X2 +_ -e3) sin3_ o 

+ ( (x2 + E) (9 - 10E2) + e,) sin5 + 

where e- = n + l - x2. 
Next we substitute this expansion into the integrand in equation (5) and em- 

ploy term-by-term integration, using the fact that the prototype integral with 
integrand exp -x2 cos so) sinm9 can be expressed exactly in terms of elementar.y 
functions. The final result is 

(6) en(x) 2- + e2 2x 3 [5 + (n-x2)?0(x2)] 

If we emiiploy the approximation derived from Stirling's formula, rn+l 
21/2(n/e)'n (which is accurate to several per cent even for n = 1) we can put 
equatioin (6) in the form en(x) = en*(x) + 0(x-3) where 

en*(X) = -2-1/2X-1( + n - x2). 

We shall consider i(En(x) + en*(x)) as our improved asymptotic expansion for the 
error function with imaginary argument. 

In the table, - i erf (ix) as tabulated in Jahnke and ELide's Tables of Functions 
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is compared with En(x), En-(x), and En(x) + en*(x). Even at x2 = 1 the im- 
proved approximation has only about one per cent error compared to forty per cent 
for En(x). 

ACCURACY OF ASYMPTOTIC APPROXIMATIONS 

X2 - i erf (x) En (x) + en *(x) En(X) En_l(X) 

1.00 1.461 1.449 2.039 1.359 
1.25 1.826 1.816 2.185 1.561 
1.50 2.250 2.280 3.049 1.830 
1.75 2.748 2.750 3.329 2.440 
2.00 3.343 3.339 3.755 2.796 
2.50 4.935 4.951 5.548 3.865 
3.00 7.313 7.310 7.650 6.042 
3.50 10.917 10.926 11.430 8.761 
4.00 16.450 16.451 16.745 13.419 
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A One-Step Method for the Numerical Solution 
of Second Order Linear Ordinary Differential 

Equations 

By J. T. Day 

In this paper we shall give a one-step method for the numerical solution of sec- 
ond order linear ordinary differential equations based on Hermitian interpolation 
and the Lobatto four-point quadrature formula. One-step methods based on quadra- 
ture were introduced into the literature by Hammer and Hollingsworth [3]; for sub- 
sequent work see Morrison and Stoller [7], and Henrici [5]. 

Throughout our discussion we shall assume that the functions N(x), f(x), g (x) 
of the differential equation y" = N(x)y' + f(x)y + g(x) are sufficiently differ- 
entiable to ensure that the derivations we give are valid in any context in which 
they are used. 

In order to simplify somewhat the discussion of the method under consideration 
we shall first treat the differential equation y" = f(x)y + g(x), y(xo) = yo , y'(xo) = 
yo'. The necessary modifications for the general second order differential equation 
y" = N(x)y' + f(x)y + g(x) will be given later. 

After integrating the above differential equation from x0 to xi = xo + h (h > 0), 
we obtain the system of integral equations: 

xo+h 

(1) y'(xo + h) = y'(xo) + jxo?h r) + g(7)] dr, 
o 
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